Difference between revisions of "Algorithm Problems"
From Hawk Wiki
(→Find duplicate numbers in array) |
(→Find duplicate numbers in array) |
||
Line 94: | Line 94: | ||
var_dump($duplicateArr); | var_dump($duplicateArr); | ||
?> | ?> | ||
+ | </pre> | ||
+ | ==interpolation search== | ||
+ | <pre> | ||
+ | public int interpolationSearch(int[] sortedArray, int toFind){ | ||
+ | // Returns index of toFind in sortedArray, or -1 if not found | ||
+ | int low = 0; | ||
+ | int high = sortedArray.length - 1; | ||
+ | int mid; | ||
+ | |||
+ | while (sortedArray[low] <= toFind && sortedArray[high] >= toFind) { | ||
+ | mid = low + | ||
+ | ((toFind - sortedArray[low]) * (high - low)) / | ||
+ | (sortedArray[high] - sortedArray[low]); //out of range is possible here | ||
+ | |||
+ | if (sortedArray[mid] < toFind) | ||
+ | low = mid + 1; | ||
+ | else if (sortedArray[mid] > toFind) | ||
+ | // Repetition of the comparison code is forced by syntax limitations. | ||
+ | high = mid - 1; | ||
+ | else | ||
+ | return mid; | ||
+ | } | ||
+ | |||
+ | if (sortedArray[low] == toFind) | ||
+ | return low; | ||
+ | else | ||
+ | return -1; // Not found | ||
+ | } | ||
</pre> | </pre> |
Revision as of 23:46, 22 February 2012
Contents
Binary Tree
Binary search
def search_binary_tree(node, key): if node is None: return None # key not found if key < node.key: return search_binary_tree(node.leftChild, key) elif key > node.key: return search_binary_tree(node.rightChild, key) else: # key is equal to node key return node.value # found key
Binary tree insert
/* Inserts the node pointed to by "newNode" into the subtree rooted at "treeNode" */ void InsertNode(Node* &treeNode, Node *newNode) { if (treeNode == NULL) treeNode = newNode; else if (newNode->key < treeNode->key) InsertNode(treeNode->left, newNode); else InsertNode(treeNode->right, newNode); }
Binary tree depth
/////////////////////////////////////////////////////////////////////// // Get depth of a binary tree // Input: pTreeNode - the head of a binary tree // Output: the depth of a binary tree /////////////////////////////////////////////////////////////////////// int TreeDepth(SBinaryTreeNode *pTreeNode) { // the depth of a empty tree is 0 if(!pTreeNode) return 0; // the depth of left sub-tree int nLeft = TreeDepth(pTreeNode->m_pLeft); // the depth of right sub-tree int nRight = TreeDepth(pTreeNode->m_pRight); // depth is the binary tree return (nLeft > nRight) ? (nLeft + 1) : (nRight + 1);
Print linklist inversed
/////////////////////////////////////////////////////////////////////// // Print a list from end to beginning // Input: pListHead - the head of list /////////////////////////////////////////////////////////////////////// void PrintListReversely(ListNode* pListHead) { if(pListHead != NULL) { // Print the next node first if (pListHead->m_pNext != NULL) { PrintListReversely(pListHead->m_pNext); } // Print this node printf("%d", pListHead->m_nKey); } }
Inverse Array
for (int i = 0; i < b; i=i++){ char temp1 = a[i]; a[i] = a[(b-1)-i]; a[(b-1)-i] = temp1; cout << a[i] ; }
Find duplicate numbers in array
<?php /* Find duplicate number in array */ //construct $b[n]=n $b=array(); $duplicateArr=array(); $a=array("1","3","4","1","5","2","8","3","2244","1"); for($i=0;$i<sizeof($a);$i++){ if(isset($b[$a[$i]])) array_push($duplicateArr,$a[$i]); else $b[$a[$i]]=$a[$i]; } var_dump($duplicateArr); ?>
interpolation search
public int interpolationSearch(int[] sortedArray, int toFind){ // Returns index of toFind in sortedArray, or -1 if not found int low = 0; int high = sortedArray.length - 1; int mid; while (sortedArray[low] <= toFind && sortedArray[high] >= toFind) { mid = low + ((toFind - sortedArray[low]) * (high - low)) / (sortedArray[high] - sortedArray[low]); //out of range is possible here if (sortedArray[mid] < toFind) low = mid + 1; else if (sortedArray[mid] > toFind) // Repetition of the comparison code is forced by syntax limitations. high = mid - 1; else return mid; } if (sortedArray[low] == toFind) return low; else return -1; // Not found }