Difference between revisions of "Algorithm Problems"
From Hawk Wiki
(→Find duplicate numbers in array) |
|||
Line 54: | Line 54: | ||
==Interpolation search== | ==Interpolation search== | ||
− | <pre class="c"> | + | <pre class="brush:c"> |
public int interpolationSearch(int[] sortedArray, int toFind){ | public int interpolationSearch(int[] sortedArray, int toFind){ | ||
// Returns index of toFind in sortedArray, or -1 if not found | // Returns index of toFind in sortedArray, or -1 if not found | ||
Line 84: | Line 84: | ||
==Random Selector== | ==Random Selector== | ||
Select k smallest value in array. O(n) | Select k smallest value in array. O(n) | ||
− | <pre class="php"> | + | <pre class="brush:php"> |
<?php | <?php | ||
function swap(&$a,&$b){ | function swap(&$a,&$b){ | ||
Line 126: | Line 126: | ||
==N choose K in order== | ==N choose K in order== | ||
− | <pre class="php"> | + | <pre class="brush:php"> |
<?php | <?php | ||
$n=6; | $n=6; | ||
Line 184: | Line 184: | ||
input : {1,2,4,5,6,1,2,4,3,5,7,2,1}<br> | input : {1,2,4,5,6,1,2,4,3,5,7,2,1}<br> | ||
output : {1,1,2}, {2,2}, {3,1}, {1,2,1}<br> | output : {1,1,2}, {2,2}, {3,1}, {1,2,1}<br> | ||
− | <pre class="php"> | + | <pre class="brush:php"> |
<?php | <?php | ||
//Sub sum problem NP | //Sub sum problem NP | ||
Line 226: | Line 226: | ||
==Swap 2 numbers in one line== | ==Swap 2 numbers in one line== | ||
− | <pre class="php"> | + | <pre class="brush:php"> |
//swap | //swap | ||
$a=10; | $a=10; | ||
Line 239: | Line 239: | ||
==Calculate degree between hour and minute hand== | ==Calculate degree between hour and minute hand== | ||
− | <pre class="php"> | + | <pre class="brush:php"> |
<?php | <?php | ||
$time=array(); | $time=array(); |
Revision as of 16:52, 19 May 2012
Contents
Binary Tree
All about Binary search tree
All about Linked List
Print linklist inversed
/////////////////////////////////////////////////////////////////////// // Print a list from end to beginning // Input: pListHead - the head of list /////////////////////////////////////////////////////////////////////// void PrintListReversely(ListNode* pListHead) { if(pListHead != NULL) { // Print the next node first if (pListHead->m_pNext != NULL) { PrintListReversely(pListHead->m_pNext); } // Print this node printf("%d", pListHead->m_nKey); } }
Inverse Array
for (int i = 0; i < b; i=i++){ char temp1 = a[i]; a[i] = a[(b-1)-i]; a[(b-1)-i] = temp1; cout << a[i] ; }
Find duplicate numbers in array
<?php /* Find duplicate number in array */ //construct $b[n]=n $b=array(); $duplicateArr=array(); $a=array("1","3","4","1","5","2","8","3","2244","1"); for($i=0;$i<sizeof($a);$i++){ if(isset($b[$a[$i]])) array_push($duplicateArr,$a[$i]); else $b[$a[$i]]=$a[$i]; } var_dump($duplicateArr); ?>
Interpolation search
public int interpolationSearch(int[] sortedArray, int toFind){ // Returns index of toFind in sortedArray, or -1 if not found int low = 0; int high = sortedArray.length - 1; int mid; while (sortedArray[low] <= toFind && sortedArray[high] >= toFind) { mid = low + ((toFind - sortedArray[low]) * (high - low)) / (sortedArray[high] - sortedArray[low]); //out of range is possible here if (sortedArray[mid] < toFind) low = mid + 1; else if (sortedArray[mid] > toFind) // Repetition of the comparison code is forced by syntax limitations. high = mid - 1; else return mid; } if (sortedArray[low] == toFind) return low; else return -1; // Not found }
Random Selector
Select k smallest value in array. O(n)
<?php function swap(&$a,&$b){ if($a!=$b) $a=$a+$b-($b=$a); //$a^=$b^=$a^=$b; } function partition(&$listArr, $left, $right, $pivotIndex){ $pivotValue = $listArr[$pivotIndex]; swap($listArr[$pivotIndex],$listArr[$right]); $storeIndex = $left; echo "L: $left ,pval: $pivotValue ,right: $right <br />"; for ($i =$left;$i< $right;$i++){ if ($listArr[$i] < $pivotValue){ swap($listArr[$storeIndex] ,$listArr[$i]); //$listArr[$storeIndex] ^= $listArr[$i]^= $listArr[$storeIndex]^= $listArr[$i]; //This has a bug $storeIndex++; } } swap($listArr[$right],$listArr[$storeIndex]); // Move pivot to its final place var_dump($listArr); return $storeIndex; } //select k smallest value function select($listArr, $left, $right, $k){ $pivotIndex = floor(($right+$left)/2); $pivotNewIndex = partition($listArr, $left, $right, $pivotIndex); $pivotDist = $pivotNewIndex - $left + 1; //var_dump($listArr); //echo $pivotDist." ".$left.' '.$right." $k<br />"; if ($pivotDist == $k) return $listArr[$pivotNewIndex]; else if ($pivotDist>$k ) return select($listArr, $left, $pivotNewIndex - 1, $k); else return select($listArr, $pivotNewIndex + 1, $right, $k - $pivotDist); } $Arr=array(1,29,3,45,5,6,7,8,9,0,22,36,88,66,44,55,33,22,14,23,31,16,94,25,10,11,12,13,2,4); echo 'final result:'.select($Arr, 0, sizeof($Arr)-1,10);
N choose K in order
<?php $n=6; $k=3; $list=array(); for($i=0;$i<$n;$i++){ $list[$i]=$i; } function delete($list,$i){ $res=array(); for($j=0;$j<sizeof($list);$j++){ if($j>$i) array_push($res,$list[$j]); } //var_dump($res); return $res; } // 3/5 -> 2/4 -> 1/3 || 3/5 -> select 2nd 2/3-> 1/3 function select($list,$k,$head="") { $n=sizeof($list); //end condition if($n<$k) return; if($n==$k && $k>1){ echo $head.implode(' ',$list).'<br />'; } else if($k==1){ for($i=0;$i<$n;$i++) echo $head.$list[$i].'<br />'; } else if($n>$k){ for($i=0;$i<=$n-$k;$i++){//select the smallest element 4-3=1 //delete $i element and before in array $list1=delete($list,$i);//delete all elements before $i $head1=$head.$list[$i].' ';//construct head select($list1,$k-1,$head1);//select $k-1 from ($n-$i) } } } echo select($list,$k);
Max sub array
Kadane's algorithm
Kadane's algorithm consists of a scan through the array values, computing at each position the maximum subarray ending at that position. This subarray is either empty (in which case its sum is zero) or consists of one more element than the maximum subarray ending at the previous position. Thus, the problem can be solved with the following code, expressed here in Python:
def max_subarray(A): max_so_far = max_ending_here = 0 for x in A: max_ending_here = max(0, max_ending_here + x) max_so_far = max(max_so_far, max_ending_here) return max_so_far
Sub sum NP problem
Find a sub array which sum equals to 4.
input : {1,2,4,5,6,1,2,4,3,5,7,2,1}
output : {1,1,2}, {2,2}, {3,1}, {1,2,1}
<?php //Sub sum problem NP $arr=array(2,1,3,1,6,5,6,2,8,4); function subsum($arr,$sum,$head=""){ //find a possible num. if($sum<=0||sizeof($arr)==0) return; foreach($arr as $i=>$a){ if ($a>$sum){ unset($arr[$i]); continue; } else if($a==$sum){//this is the only possbility echo "Result: ".$head.$a." from sum $sum & head $head & a=$a<br />"; unset($arr[$i]); return; } else{ //keep $a $head1=$head.$a." "; unset($arr[$i]); //echo "case3: keep a=$a and send to sum".($sum-$a)." with head=$head and arr_len=".sizeof($arr)."<br />"; subsum($arr,$sum-$a,$head1); //skip $a then continue } } return; } subsum($arr,5); /* output Result: 2 1 2 from sum 2 & head 2 1 & a=2 Result: 2 3 from sum 3 & head 2 & a=3 Result: 1 3 1 from sum 1 & head 1 3 & a=1 Result: 1 4 from sum 4 & head 1 & a=4 Result: 3 2 from sum 2 & head 3 & a=2 Result: 1 4 from sum 4 & head 1 & a=4 Result: 5 from sum 5 & head & a=5 */
Swap 2 numbers in one line
//swap $a=10; $b=20; $a=$a+$b-($b=$a); echo $a." and ". $b."\n"; // output 20 and 10 $a^=$b^=$a^=$b; //This has a bug. You cannot do things like this $a^=$a^=$a^=$a echo $a." and ". $b; //output 10 and 20
Calculate degree between hour and minute hand
<?php $time=array(); $time['h']=12; $time['m']=15; $time['s']=30; function clockDegree($time){ $mPercent=((float)$time['m']+((float)$time['s']/60.0))/60.0; $mDegree=$mPercent*360; $hdegree=((int)$time['h']%12+(float)$mPercent)/12.0*360; echo abs($mDegree-$hdegree); } clockDegree($time);