Difference between revisions of "Algorithm Problems"
From Hawk Wiki
(→Binary Tree) |
(→Binary Tree) |
||
Line 1: | Line 1: | ||
==Binary Tree== | ==Binary Tree== | ||
− | [[Binary | + | [[All about Binary search tree]] |
===Binary search=== | ===Binary search=== | ||
<pre> | <pre> |
Revision as of 05:56, 28 February 2012
Contents
Binary Tree
Binary search
def search_binary_tree(node, key): if node is None: return None # key not found if key < node.key: return search_binary_tree(node.leftChild, key) elif key > node.key: return search_binary_tree(node.rightChild, key) else: # key is equal to node key return node.value # found key
Binary tree insert
/* Inserts the node pointed to by "newNode" into the subtree rooted at "treeNode" */ void InsertNode(Node* &treeNode, Node *newNode) { if (treeNode == NULL) treeNode = newNode; else if (newNode->key < treeNode->key) InsertNode(treeNode->left, newNode); else InsertNode(treeNode->right, newNode); }
Binary tree depth
/////////////////////////////////////////////////////////////////////// // Get depth of a binary tree // Input: pTreeNode - the head of a binary tree // Output: the depth of a binary tree /////////////////////////////////////////////////////////////////////// int TreeDepth(SBinaryTreeNode *pTreeNode) { // the depth of a empty tree is 0 if(!pTreeNode) return 0; // the depth of left sub-tree int nLeft = TreeDepth(pTreeNode->m_pLeft); // the depth of right sub-tree int nRight = TreeDepth(pTreeNode->m_pRight); // depth is the binary tree return (nLeft > nRight) ? (nLeft + 1) : (nRight + 1);
Print linklist inversed
/////////////////////////////////////////////////////////////////////// // Print a list from end to beginning // Input: pListHead - the head of list /////////////////////////////////////////////////////////////////////// void PrintListReversely(ListNode* pListHead) { if(pListHead != NULL) { // Print the next node first if (pListHead->m_pNext != NULL) { PrintListReversely(pListHead->m_pNext); } // Print this node printf("%d", pListHead->m_nKey); } }
Inverse Array
for (int i = 0; i < b; i=i++){ char temp1 = a[i]; a[i] = a[(b-1)-i]; a[(b-1)-i] = temp1; cout << a[i] ; }
Find duplicate numbers in array
<?php /* Find duplicate number in array */ //construct $b[n]=n $b=array(); $duplicateArr=array(); $a=array("1","3","4","1","5","2","8","3","2244","1"); for($i=0;$i<sizeof($a);$i++){ if(isset($b[$a[$i]])) array_push($duplicateArr,$a[$i]); else $b[$a[$i]]=$a[$i]; } var_dump($duplicateArr); ?>
Interpolation search
public int interpolationSearch(int[] sortedArray, int toFind){ // Returns index of toFind in sortedArray, or -1 if not found int low = 0; int high = sortedArray.length - 1; int mid; while (sortedArray[low] <= toFind && sortedArray[high] >= toFind) { mid = low + ((toFind - sortedArray[low]) * (high - low)) / (sortedArray[high] - sortedArray[low]); //out of range is possible here if (sortedArray[mid] < toFind) low = mid + 1; else if (sortedArray[mid] > toFind) // Repetition of the comparison code is forced by syntax limitations. high = mid - 1; else return mid; } if (sortedArray[low] == toFind) return low; else return -1; // Not found }
Random Selector
Select k smallest value in array. O(n)
<?php function swap(&$a,&$b){ if($a!=$b) $a=$a+$b-($b=$a); //$a^=$b^=$a^=$b; } function partition(&$listArr, $left, $right, $pivotIndex){ $pivotValue = $listArr[$pivotIndex]; swap($listArr[$pivotIndex],$listArr[$right]); $storeIndex = $left; echo "L: $left ,pval: $pivotValue ,right: $right <br />"; for ($i =$left;$i< $right;$i++){ if ($listArr[$i] < $pivotValue){ swap($listArr[$storeIndex] ,$listArr[$i]); //$listArr[$storeIndex] ^= $listArr[$i]^= $listArr[$storeIndex]^= $listArr[$i]; //This has a bug $storeIndex++; } } swap($listArr[$right],$listArr[$storeIndex]); // Move pivot to its final place var_dump($listArr); return $storeIndex; } //select k smallest value function select($listArr, $left, $right, $k){ $pivotIndex = floor(($right+$left)/2); $pivotNewIndex = partition($listArr, $left, $right, $pivotIndex); $pivotDist = $pivotNewIndex - $left + 1; //var_dump($listArr); //echo $pivotDist." ".$left.' '.$right." $k<br />"; if ($pivotDist == $k) return $listArr[$pivotNewIndex]; else if ($pivotDist>$k ) return select($listArr, $left, $pivotNewIndex - 1, $k); else return select($listArr, $pivotNewIndex + 1, $right, $k - $pivotDist); } $Arr=array(1,29,3,45,5,6,7,8,9,0,22,36,88,66,44,55,33,22,14,23,31,16,94,25,10,11,12,13,2,4); echo 'final result:'.select($Arr, 0, sizeof($Arr)-1,10);